
ALSO IN THIS ISSUE:

yy The NACHA Cha-Cha

yy MV Reporting: A New Tool

yy Leveraging MV to Learn Everything

Creating Creating
The Next The Next

GenerationGeneration

int l -spec trum.com $7.00 U.S.

I N T E R N A T I O N A L

SPECTRUMSPECTRUM
®

THE MULTIVALUE TECHNOLOGY MAGAZINE I September/October 2019

 SPECTRUM

I N T E R N A T I O N A L

SPECTRUM
MultiValue Conference and Partner Exchange

39 TH Annua l Conference
APRIL 20 – 23, 2020 | SADDLEBROOK RESORT, TAMPA, FL

SAVE THE DATE

CHANGE. ADAPT. EVOLVE.

EARLY BIRD REGISTRATION STARTS

OCTOBER 28TH

www.intl-spectrum.com/conference

THE MULTIVALUE TECHNOLOGY MAGAZINE

S e p t e m b e r / O c t o b e r 2 0 1 9

 SPECTRUM
 I N T E R N A T I O N A L

F E A T U R E S

C O V E R

6 Business Tech: Building MultiValue Programmers

- Part I We hear it all the time: I can’t find MV programmers. As

someone who has trained a lot of programmers over the years, I assure

you that there are qualified people out there. And. If you need more, it

isn’t that hard to create them. One of the reasons MultiValue survives

is because people with a technical or business background can learn it

quickly. A good, solid set of lessons can go a long way. Here’s the first

one. BY CHARLES BAROUCH

D E P A R T M E N T S
From the Inside page 4

From the Press Room page 12

10 Making NACHAs: Part I Electronic Funds Transfer is a broad term for a critical

process designed to move money in a controlled, well-documented manner. Core to this

mission is the NACHA file format. Like EDI, this format was created as a simple, precise, and

exact method. Like EDI, everyone has elected to implement it a little differently. This series

will help you understand how to dance the NACHA cha-cha. BY KEVIN KING

14 Basic MV Reports – A New Way to Handle U2 Reporting As the “islands

of information” model of business continues to implode, we are more and more tasked with

developing methods for sending and receiving data. Sometimes, the modern answers can

be found with old friends. Farley Welch makes the case for using the dBASE data model as

a twenty-first century transport for your MultiValue data. BY FARLEY WELCH

20 The Rosetta Stone Project The OCONV is an amazing conversion tool. Imagine

if you could pack it up and take it with you outside the MultiValue world? Aaron Young,

Dick Thiot, and I decided to do just that. In this series, we’ll show you code in several other

languages that does parts of what OCONV does. Use it to teach yourself other languages

or use it to bring the best of MV to all your projects. BY CHARLES BAROUCH, WITH

ADDITIONAL CODE BY AARON YOUNG AND DICK THIOT

International Spectrum and MultiValue are registered trademarks of International Spectrum,

Inc. All other registered trademarks are the property of the respective trademark holders.

C
O
N
T
E
N
T
S

INTL-SPECTRUM.COM u September/October 2019 u 3

 SPECTRUM
 I N T E R N A T I O N A L

the

INTL-SPECTRUM.COM u September/October 2019 u 4

International Spectrum is published six (6) times per
year at the subscription price of $40.00 U.S. in the
U.S.A.; $45.00 U.S. in Canada and Mexico; $50.00
U.S. for other countries. Single copy rates are $7.00
U.S. in the U.S.A. and Canada, and $9.00 U.S. in all
other countries. International Spectrum is published
by International Specturm, Inc., 3691 E. 102nd Ct.,
Thornton, CO 80229; Tel: 720/259-1356; Fax: 603/250-
0664 E-Mail: request@intl-spectrum.com. Copyright
2019 International Spectrum, Inc. All rights reserved.
Reproduction in whole or in part, without written per-
mission, is prohibited.

PRINTED IN USA

NEWS RELEASES/UNSOLICITED ARTICLES
International Spectrum is eager to print your submissions of
up-to- the-minute news and feature stories complementary to
the MultiValue marketplace. Black and white or color photo-
graphs and diagrams are welcome. Although there is no guar-
antee a submitted article will be published, every article will be
considered. Please send your press releases, articles, and queries
to: editor@intl-spectrum.com. International Spectrum retains all
reprint rights.

International Spectrum is a registered trademark and MultiValue
is a trademark of International Spectrum, Inc. All other registered
trademarks and trademarks are the property of the respective
trademark holders.

September/October 2019

N A T H A N R E C T O R
President

C H A R L E S B A R O U C H
Editor

T R A C E Y R E C T O R
Layout

Learn more about the MultiValue Symbol and see
what MulitValue Technologies and MultiValue

Communities exist to help you support and manage
your business and systems. To find out more visit

http://www.intl-spectrum.com

M I S S I O N S TAT E M E N T International
Spectrum magazine’s editorial mission is
to be the premier independent source of
useful information for users, developers,
and resellers of MultiValue database
management systems, open systems
business database solutions, and related
hardware, software, and peripherals.
Published bimonthly, International
Spectrum provides comprehensive
coverage of the products, companies,
and trends that shape the MultiValue
marketplace as well as the computer
industry at large — helping its readers get
the most out of their business computer
systems.

i n t l - s p e c t r u m . c o m / f a c e b o o k

Inside

t w i t t e r . c o m / i n t l s p e c t r u m

From

A rtificial Intelligence is a
hot topic for businesses.
As with most big things,

it hasn’t come to the forefront
because of rigorous research.
It has come because of the
success of other projects like it.
It’s already transforming several
industries. It has been all over
the news.

Despite what the growing
excitement implies, AI is not
a new concept. This hot new
thing has been with us for quite
a while.

There’s a Spectrum Magazine
article, written back in the early
‘90s, that shows you how to
create an “Expert System,” a
form of AI decision making,
inside the PICK Database. To be
fair, the introduction of much
more powerful computers
and specialize chips has also
driven the uptick in attention.
AI software tends to be very
calculation heavy. Faster
processing, disk, and RAM have
all extended the reach of AI.

While most CEOs or CIOs are
aware that it exists, many are
still unsure how to employ it
to their benefit. Knowing AI
makes robotics, drones, image
recognition, and driverless cars
more viable is only useful if you
are in those specific markets.
When innovation comes from
executives seeing it on the news,
it tends to lack clear links to the
business they are operating.

Additionally, a lot of AI software
is outside the reach of most
companies’ resources and
budgets. Without clear plans

and serious benefit analysis,
attempts are likely to be money
pits, not successes.

It comes down to a fundamental
confusion over exactly what AI
software is and what it can do.

I like to explain it by dividing
AI onto three separate
components: Data Analytics,
Predictive Analysis, and Machine
Learning. And yes, I’m lumping
high-speed data mining in for
simplicity’s sake.

True AI is all about Machine
Learning. But this is the most
sophisticated form of AI and
likely not going to be used
in business software. Those
edge cases are growing and
becoming less edge-like, but
they aren’t center-stage today.
Data Analytics and Predictive
Analytics are really what
businesses should be focusing
on.

Data Analytics is all about
finding trends in your data.
Most enterprise software has so
much data. No one know where
to start to get answers without
someone asking smart, focused
questions. While this sounds
a lot like Data Mining, the
difference is that Data mining
returns the specific results,
already formatted for processes
like dashboards and reports.
While Data Analytics is designed
to take raw data, and look for
any patterns outside of the
already understood Dashboards.
One pushes data into assumed
relationships while the other
derives relationships from the
data.

INTL-SPECTRUM.COM u September/October 2019 u 5

Data Analytics is also used to
support or debunk existing
assumptions.

Predictive Analytics, on the other
hand, is all about taking the data
you have and projecting into the
future. If you have an inventory
control and purchasing system,
then you are likely already using
an older form of Inventory
Forecasting. These forecasting
reports are using a Predictive
Analytics model.

The main difference between
these existing reports and the
newer Predicative Analytics
AI processes is the complexity.
Modern Predicative Analytics
take into account far more data
complexity. They address What
If questions, rather than just
estimate future needs based on
past performance.

AI Machine Learning is the Holy
Grail; and much more complex.
It combines the concepts of Data
Analytics and Predictive Analytics,

but instead of the person asking a
specific question, the computer
returns its own assumptions
based on the data provided.

This is why Artificial Intelligence
and Machine Learning are so
important for business. You
provide your data to an AI, and
instead of have a person who
knows how to ask a precise
question, you have the computer
providing these assumptions for
review. As we all know, people are
better at picking apart an answer
than at providing a complete one.

Make sure you join us at the
International Spectrum 2020
Conference in Florida to talk more
about how Artificial Intelligence
will be used with your MultiValue
database.

GET CONNECTED
K n o w l e d g e a n d e d u c a t i o n f o r t h e M u l t i V a l u e P r o f e s s i o n a l

P ro f e s s i o n a l M e m b e r s h i p s p rov i d e yo u a c c e s s t o

k n ow l e d g e , s o l u t i o n s , i n f o r m a t i o n , a n d c o d e t h a t yo u

wo n ’ t f i n d i n o t h e r l o c a t i o n s . SPECTRUM

I N T E R N A T I O N A L

h t t p : / / w w w. i n t l - s p e c t r u m . c o m / m e m b e r s h i p /

GET CONNECTED
K n o w l e d g e a n d e d u c a t i o n f o r t h e M u l t i V a l u e P r o f e s s i o n a l

P ro f e s s i o n a l M e m b e r s h i p s p rov i d e yo u a c c e s s t o k n ow l e d g e , s o l u t i o n s ,
i n f o r m a t i o n , a n d c o d e t h a t yo u wo n ’ t f i n d i n o t h e r l o c a t i o n s .

h t t p : / / w w w. i n t l - s p e c t r u m . c o m / m e m b e r s h i p /

 SPECTRUM

I N T E R N A T I O N A L

M e m b e r s h i p I n c l u d e s :
• M a g a z i n e
• News l e t t e r
• O n - D e m a n d V i d e o s
• D i s c o u n t e d C o n f e r e n c e R a t e s
• R e s e a r c h p a p e r s
• C a s e S t u d i e s
• S o u r c e C o d e

NATHAN RECTOR
President

International Spectrum
nathan@intl-spectrum.com

International
Spectrum

 2018 Compilation

Now Available in Print!

January/February 2018 to November/December 2018

In a Single Bound and Printed Volume

Available on Blurb
Search for

International Spectrum
 in Bookstore

INTL-SPECTRUM.COM u September/October 2019 u 6

N ot everyone is a natural-born
teacher. This article series is
not a substitute for real train-

ing. If you have the knack, this series is
here to help you build your own pro-
grammers. If you have no choice —
can’t engage a trainer — at least you’ll
have this.

When I teach, I like to start with the
basics. Even if the person I’m teaching
is experienced in other systems, laying
groundwork helps them connect with
my perspective. Sharing a common
view makes teaching easier.

What is Data
When computers were first entering
small to mid-sized businesses, data
was an obscure concept. Today, while
many people lack a solid, practical def-
inition, the idea itself is already firmly

established. Training a new MultiValue
programmer or analyst is both easier
and harder because of this.

Let’s start by mixing how data is rep-
resented with what data is. While ex-
plicitly separating those ideas makes
academic sense, merging them makes
it graspable. You’ll see very little aca-
demic sense in this series. We aren’t
building a theology, we are building
for practical use.

Fixed
Fixed length data is a bedrock concept.
Look at this example [Figure 1].

The problem with fixed length be-
comes obvious when Alexandra Rogers
has to be added to the database. We’ve
only allotted seven characters to the
First Name field. She needs nine. To
fix this we have to re-factor the entire
database to allow nine characters in the
First Name and change every reference
in every program.

When she divorces and goes back to
her maiden name of Wychowski, we
have to do the same thing for our too-
small Last Name field. And, if we get
an eleven character long job designa-
tion, again we re-factor.

To make matters worse, Robert’s full
name is now taking up eighteen spaces
because every name must take up the
same amount of space. Yes, disk is
cheap, but everything you do to make
data less efficient should come with a
meaningful benefit. This does not.

Delimited
Delimited fields solve the length prob-
lem [Figure 2].

Oops. We lost a field (Age) on Alex-
andra. In a fixed format, that would
have stood out visually. In delimited,

B Y C H A R L E S B A R O U C H

BUSINESS TECH

Building MultiValue Programmers
Part I

Building MultiValue Programmers

12345678901234567890123456789012345678901234
ROBERT MAY POLITICIAN 58BLKBLK099887765

First Name	 ROBERT
Last Name	 MAY
Profession	 POLITICIAN
Age		 58
Eye Color	 BLK
Hair Color	 BLK
ID #		 099887765

Figure 1

SQL’s rules are wildly
insufficient.

INTL-SPECTRUM.COM u September/October 2019 u 7

we don’t have neat columns. We need
to insert her age, 26, to fix the data.
The good news is that our data only
takes the space it needs, plus one for
each delimiter. We did have to trade a
some human-readablitity.

SQL
SQL tries to solve the missing field is-
sue by adding validation rules directly
into the database schema. In this case,
Age would have been an Integer field
which would have stopped us from
adding BLU as the value.

Unfortunately, SQL also reintroduces
maximum field lengths, which is a
major step backwards. This might be
a good trade, except that SQL’s rules
are wildly insufficient. Yes, knowing
that Age is numeric would have caught
the error on our previous example, but
generally, knowing if something is a
number, boolean, or character, is an
extremely limited validation. You still
have to do real validation in the pro-
gramming layer, so SQL’s half-thought-
out feature is just a way to split the
logic arbitrarily into two places.

Our Story so Far
All three of these models are predi-
cated on a poor premise: One ques-
tion equals one answer. What if Robert
works a second job? What if Alexandra
has a second ID #? In the real world,
data is rarely one to one. These are flat
data models. Real data is lumpy.

If I’m making dolls, I might have a re-
tail price, a wholesale price, a samples
price (free), and a donation price for
tax purposes when I send my excess
inventory to a charity. In fixed, delim-
ited, or SQL models, I have a choice of
making each of those a discreet loca-
tion in my data, or I have to resort to
child tables [Figure 3].

With this extended structure, we now
requires five reads to get a product and
price. Yes, CPU is cheap, but every-
thing you do to make data less efficient

should come with a meaningful ben-
efit. This does not.

Of course, if you have another mul-
tiple-answer situation, you spawn an-
other child table and add some more
reads. Perhaps the doll comes with sev-
eral possible outfits. This is worse than
the price issue because you not only
have additional reads but you also have
a variable number of reads, creating an

SQL Product Table
Product	 ID #
Betsy	9988772
JoeJoe	9988773

SQL Price Table
ID #	 Type	 Price
9988772	 W	 10.00
9988772	 R	 15.00
9988772	 S	 0.00
9988772	 D	 12.00
9988773	 W	 9.50
9988773	 R	 13.25
9988773	 S	 0.00
9988773	 D	 11.75

Figure 3

ROBERT,MAY,POLITICIAN,58,BLK,BLK,099887765
ALEXANDRA,WYCHOWSKI,MATHEMATICIAN,BLU,RED,986753099

First Name	 ROBERT			 ALEXANDRA
Last Name	 MAY			 WYCHOWSKI
Profession	 POLITICIAN		 MATHEMATICIAN
Age		 58			 BLU
Eye Color	 BLK			 RED
Hair Color	 BLK			 986753099
ID #		 099887765

Figure 2

www.pickprogram.com
contact@pickprogram.com

(614) 921-9840

Celebrating 20 Years
as a leader in the
MultiValue Industry

D3 UniVerse UniData PICK jBase mvBase Caché

Custom developed solutions based on your needs
Senior level developers and business analysts to guide you
Developing long term partnerships

IT Solutions. Proven Results.
One Project. One Decision. One Keystroke at a time.

INTL-SPECTRUM.COM u September/October 2019 u 8

“are we done yet?” inefficiency where
you have to scan until you don’t find
any. In a child table with a large num-
ber of rows, this matters.

XML/JSON
XML or JSON might be possible solu-
tions [Figure 4].

With XML and JSON, we’ve lost the
easy scanning of fixed fields. We’ve also
lost the relative compactness of delim-
ited rows because we are now required
to add the field tags into every single
record. This is an example of a terrible
trade-off. It is less human readable, it is
less computer readable, it is space ex-

pensive, and slower than every format
previously discussed.

Columnar
Columnar databases (like Hadoop)
have a smart premise: We search more
than we write, so let’s optimize for
searching [Figure 5].

By splitting the data by column, we are
back to multiple reads but unlike SQL,
we get something in exchange. When I
search by profession, I only deal with
one table, and that table has the small-
est amount of data needed to resolve
that part of the query.

Additionally, in a ten field database,
while I do have to do ten reads, I get
the ID from the first read and that
changes the reads from searches (fixed
child tables, delimited child tables,
SQL child tables) to targeted reads
(columnar tables). And yes, SQL has
indexes, but so do Columnar data-
bases. So instead of the index being a
speed-up for the inefficiency in SQL,
in Columnar our indexes are a speed-
up to an already efficient system.

Document Databases
Document databases (like MultiValue
and MongoDB) are based on a differ-
ent premise than the ones above. They
support embedded table logic to allow
the flexibility of child tables without
the extra reads.

Now, I need to say this before we go
any further. Document databases can
do what every data format we’ve listed
above can do. We can implement co-
lumnar logic, fixed logic, delimited
logic, or SQL logic in a document da-
tabase. We can do this easily. Further,
we can mix approaches.

Negative: This is chaotic! Positive: This
is flexible and models the real world.

For this example, I’m going to use
MultiValue because MongoDB repre-
sents as JSON, which we have already
covered. Additionally, I will use Mul-
tiValue’s preferred method because all
of the other methods it can do are cov-
ered above [Figure 6].

<?xml version=”1.0” encoding=”UTF-8”?>
<dolls>
 <product>
 <id>9988772</id>
 <price>
 <type>W</type>
 <amount>10.00</amount>
 </price>
 <price>
 <type>R</type>
 <amount>15.00</amount>
 </price>
 </product>
 <product>
 <id>9988773</id>
 <price>
 <type>W</type>
 <amount>9.50</amount>
 </price>
 <price>
 <type>R</type>
 <amount>13.25</amount>
 </price>
 </product>
</dolls>

JSON
{
	 “dolls”: {
			 “product”: {
				 “id”: “9988772”,
				 “price”: {
					 “w”: “10.00”,
					 “r”: “15.00”
				 }}, “product”:{
				 “id”: “9988773”,
				 “price”: {
					 “w”: “9.50”,
					 “r”: “13.25”
					 }
				 }
			 }
	 }

Figure 4

First Name Table
1	 ROBERT
2	 ALEXANDRA

Last Name Table
1	 MAY
2	 WYCHOWSKI

Profession Table:
1	 POLITICIAN
2	 MATHEMATICIAN

Figure 5

INTL-SPECTRUM.COM u September/October 2019 u 9

Robert’s additional job (Bricklayer)
is accommodated by adding a multi-
value to attribute three. That’s the ter-
minology we use. Alexandra’s two legal
last names share an attribute. Her two
ID #s share their attribute.

So, scorecard: we have the advantages
and disadvantages of delimited text,
but by embedding delimiters within
delimited text, we have acquired sin-
gle reads. Mike Ruane calls this com-
pressed XML. The attribute numbers
stand in for the XML or JSON tags,
creating compactness while also keep-
ing space efficiency.

What do I use?
I use everything. I prefer MultiValue in
most cases, but the goal of a database is

to store, manage, and return data. That
can be done with all of these. If a shop
is already using Hadoop, use it. If they
have SQL, use that. If they have Multi-
Value, use that. IS

ROBERT^MAY^POLITICIAN]BRICKLAYER^58^BLK^BLK^099887765
ALEXANDRA^WYCHOWSKI]ROGERS^26^BLU^RED^986753099]123557722

Figure 6

CHARLES BAROUCH

is the CTO of HDWP,

Inc. and the Publisher

at HDWPbooks. You

can read his writing in

International Spectrum, Theme-Thology,

Novo Pulp, Pax Solaria, PerehelionSF, and

the Interrogative series, which begins with

Tiago and the Masterless.

INTL-SPECTRUM.COM u September/October 2019 u 10

In 2018, the ACH (Automated
Clearing House) network pro-
cessed nearly 23 billion pay-

ments, according to www.nacha.org.
Note this isn’t payment AMOUNTS,
but rather payment COUNTS. The
amounts of these transactions, in a
single year, exceed $50 trillion. Pon-
der that for a moment… $50 trillion
of money moved in one year — over a
million per second!

What started as the backbone of the
U.S. banking industry, the ACH net-
work — also commonly referred to
as Electronic Funds Transfer (EFT)
— is now integrated into most in-
dustries, providing a service to move
money from one entity to another
securely. Whether it’s receiving or
sending money, direct deposit of pay-
roll, or just about anything involving
the movement of money, you can bet
the ACH network is probably in play
somewhere.

One of the most common ways to
communicate with the ACH network

is through a text file known as a NA-
CHA (National Automated Clearing
House Association) file. The format
is ridiculously simple, in theory. But,
because it supports all sorts of different
types of electronic transactions, build-
ing a program to generate a NACHA
file can be an especially onerous task.
That’s the point of our discussion to-
day; let’s try to demystify some of the
weird NACHA-isms.

The first thing to understand about
the NACHA file format is that even
though it’s an established standard,
each receiver implements things just
a little bit differently. You’ll need to
work with your trading partner (the
party sending or receiving the file) to
make sure what is sent is properly in-
terpreted on the other end.

In this series, we’re going to build a file
that is used to send money to people
while at the same time receiving mon-
ey from people. For this reason, it can
be useful to think of the NACHA file
like a checkbook; you’re going to write
checks to give money to people, and
you’re going to have deposits of money
coming into your account(s). The NA-
CHA file standardizes this into a trans-
mittable format.

Let’s take a peek at a sample NACHA
file[Figure 1].

That’s clear, right? I’m sure that if
you’ve never seen a NACHA file be-
fore, this is just a wall of text. Let’s
break it down, brick by brick.

The key to understanding any of it is
to know that each line is 94 characters.
A line is not necessarily a complete re-
cord as we think of records.

The first character of each line is a line
type. Here’s a translation guide:

yy 1: File header

yy 5: Batch header

yy 6: Detail

yy 7: Addenda (not shown)

yy 8: Batch footer

yy 9: File footer

Pretty simple, right? Well, that’s the
theory. As you can see from the ex-
ample, there are a lot of different fields

B Y K E V I N K I N G

Making NACHAs
Part I

Figure 1

...even though it’s an
established standard, each
receiver implements things
just a little bit differently.

http://www.nacha.org

INTL-SPECTRUM.COM u September/October 2019 u 11

stuffed into each 94-byte record. To
better understand what’s inside of
them, we first need to review a few
NACHA terms. From my own experi-
ence, having done several NACHA ex-
tracts, the terminology is typically one
of the biggest tripping points.

If you look up the terms originator and
receiver on the various websites which
explain NACHA, the vague descrip-
tions will not be helpful. Instead, re-
turning to our analogy, think of the
originator as the person with the check-
book. If you’re sending the file, you
are the originator. Or more accurately,
your bank is.

However, if you’re receiving the file,
you are the receiver. Keep this in mind,
because it has nothing to do with
whether you’re the one sending or the
one receiving money, it is about who is
sending and who is receiving the file.

If you build the file, you’re the origina-
tor. The accepted synomyms are source
and company identifier. Starting to see
how this can get confusing?

That’s why I wrote this. I’ve already
stubbed my toe on these issues. I want
to save you from the same pain.

The term ODFI (Originating De-
pository Financial Institution) is the
source of much of the confusion. If

you’re sending money, your bank is the
ODFI. That just makes sense. How-
ever, if you’re receiving money from
someone else, the sender’s bank is the
originator, right? WRONG. If you’re
building the file, the ODFI is the ABA
(American Bankers Association) num-
ber of your bank. Looking again at our
analogy, the ACH network needs to
know where our bank account lives.
The ODFI provides that value.

The ABA is the 9 digit number on the
bottom left of a check — surrounded
by funny graphics — is commonly
known as a routing number or tran-
sit number or routing/transit number.
In ACH parlance, however, it’s com-
monly known as an ABA number.
It’s all the same, but like most things
in ACH, there’s a bunch of different
terms to describe it.

Following ODFI is RDFI (Receiving
Depository Financial Institution). Just
think of RDFI as the other guy. This
can also be known as the destination.

The final term to become familiar with
is the Center Name. This describes the
ACH endpoint who will receive your
file — commonly a bank. Some banks
don’t care about this value, whereas
others are very, very specific about the
center name and will reject the file if

the center name is not exactly what
they want.

Before we get into the details of build-
ing each record, there is one more im-
portant detail to cover. Once you’ve
built your NACHA formatted file,
then what? You’ll need some way to
transmit this to your assigned center.
On Multivalue systems, this is com-
monly done using SFTP. If you are
dealing with a bank which doesn’t sup-
port SFTP, you’ll need to download the
file to a workstation and then upload it
to a web form provided by the bank.
Regardless of how the information gets
out the door, it is imperative to always
keep in mind that this is the sensitive
information and must be protected in
every way possible. This is your bank-
ing information and the banking in-
formation of your customers and ven-
dors, and there are countless nefarious
people on the web sniffing the wire for
exactly this kind of information to do
as much damage as possible.

Believe it or not, I have seen banks
that want the NACHA file emailed to
them. Don’t do it. It would be more
secure to copy the file to a flash drive
and drive it to the bank. Then again,
a flash drive isn’t exactly secure either.

In later installments of this series, we’ll
break down each of the different types
of NACHA file records and explain
more confusing terminology and how
you can easily generate this type of file
on any Multivalue system. is

KEVIN KING is the

President and Chief

Technologist with

Precision Solutions,

Inc., a leader in tech-

nology solutions, sup-

port, and training.

PRC can help you meet your compliance requirements
and make IT more agile and productive. No extra
work, nothing to remember, nothing to fall through
the cracks. Our software development lifecycle

tool automatically prevents or detects change
according to your criteria. You can deploy,

rollback, test and report quickly, automatically and
with confidence. Let PRC protect your company’s
valuable U2 data and software assets.

SJ+ Systems Associates • info@sjplus.com • http://sjplus.com

IT audits have you jumping through hoops?

From the Press Room

INTL-SPECTRUM.COM u September/October 2019 u 12

MVExtensions
2.0 Released for

Visual Studio
Code

The MVExtensions Team
has published MVExtension
2.0 for Visual Studio Code.
MVExtensions is a Visual
Studio Code used for syntax
highlighting, IntelliSense and
program formatting for Pick-
Basic code development.

Download and install this
Community Project from:

https://github.com/mvexten-
sions/mvbasic 

Paradigm
Systems Releases

Mercury Flash
V5.2

Paradigm Systems will re-
lease version 5.2 of their
Multivalue database manage-
ment system Mercury Flash in
early October.

Starting with this release,
OpenQM 3.4-16 by Zumasys
will now be supported in ad-
dition to the UniData and Uni-
Verse databases from Rocket
Software.

“We are excited to add Open-
QM to the list of supported
databases for Mercury Flash.
OpenQM is the first addition
to our supported environ-
ment and we are in the pro-
cess of creating versions to
support other Multivalue en-
vironments, said Jay LaBonte,
president and founder of Par-
adigm Systems.

In addition to supporting
OpenQM 3.4-16 an above in
this release, there are some
additional improvements us-
ers will find in Mercury Flash
5.2 are:

•	 Networked sensors such as
Temperature, Humidity and
Barometric pressure can
now be monitored.

•	 The User Defined
Scheduler has been
greatly improved allowing
additional security on
commands that can be
executed within each
defined schedule.

•	 A new Export button has
been added to several
utilities allowing the report
contents to be exported to
a PDF formatted report and
then printed.

•	 Account Caching has been
improved to better handle
distributed files.

•	 Improved handling of
virtual accounts.

•	 Improved processing by
the Account Cleaner to
better identify items for
cleanup.

•	 A new Honey Pot utility has
been added to allow you to
monitor unused ports and
identify scanning bots and
other malicious software

that is accessing your
network.

•	 Various minor fixes and
improvements.

Mercury Flash is the state-
of-the-art web based man-
agement console specifically
designed for the UniVerse,
UniData and OpenQM da-
tabases. Mercury Flash ver-
sion 5 was released in July of
2018 and over the past year
it has experienced incredible
growth and acceptance in the
community and has quickly
become the go to solution for
Multivalue database manage-
ment and tuning. 

Revelation
Software Release

OpenInsight
10.0.7

Major Changes in the Open-
Insight 10.0.7 Release

OpenInsight now provides an
option to change the preci-
sion of mathematical opera-
tions. This can be set by call-
ing the setEPMode stored
procedure, passing in 1 to
enable and 0 to disable the
functionality. By default, the
extended precision math will
maintain 32 digits of preci-
sion, but this can be modified
by calling the setEPMode-
Precision stored procedure,
passing in the number of
digits of precision desired.
Both the enabling of extend-

ed precision, and the default
number of digits, can also
be defined in the application
properties. The following op-
erators/functions are affect-
ed: +, +=, -, -=, *, /, ==, =, !=,
<>, >, <, >=,<=, mod(), int(),
abs(), atan(), cos(), exp(), ln(),
pwr(), sin(), sqrt(), tan()

OpenInsight’s RLIST function-
ality and performance have
also been improved starting
with the 10.0.7 release. A new
version of RLIST (RLISTX),
which optionally replaces and
extends RLIST, is available to
enable these enhancements.
RLISTX merges the features
of RLIST, SELECT_INTO,
OLIST/RUN_REPORT, and
RTI_XBAND. One obvious
change is the ability to pass
in multiple select statements
to RLIST in a single call, @FM
delimited. Using the Record
Editor, or the Configuration
Record option from the OI
Console, you must create a
CFG_RTI_RLIST record in SY-
SENV, with RLISTX in field 1.
If this record doesn’t exist, or
has anything other than RL-
ISTX in field 1, then normal
RLIST behavior (“RLIST 9”)
and functionality will remain.
(Note that the CFG_RTI_RLIST
information is cached by your
system; after changing this
value, you should exit and re-
enter OpenInsight).

The MultiValue BFS (MVBFS)
connections for QM, D3 and
U2 have been enhanced to
submit multiple select lists to
the “back end” host for bulk
processing whenever pos-
sible. This enhancement can
result in significant perfor-
mance improvements when

https://github.com/mvextensions/mvbasic
https://github.com/mvextensions/mvbasic

From the Press Room

INTL-SPECTRUM.COM u September/October 2019 u 13

using an MVBFS connection.
Note that these changes
work in conjunction with the
RLISTX changes discussed
above; you must enable RL-
ISTX and install a “plugin”
stored procedure on the
host system to access these
changes. There is now a
button on the MVBFS con-
nection designer which will
install this plugin (a program
named RTI_MVBFS_SERVER_
PLUGIN_U2, RTI_MVBFS_
SERVER_PLUGIN_D3, or
RTI_MVBFS_SERVER_PLU-
GIN_QM).

Starting with OpenInsight
10.0.4, “child” processes
launched from OpenInsight
can be configured so that
they do not consume addi-
tional license seats. In partic-
ular, CTO, AREV64, BRW, and
O4W calls (using the engine
server’s built-in web server)
made from a copy of Open-
Insight will not count against
the licensed count of users.

For example, a single user
copy of OpenInsight can now
run the IDE, a CTO session,
and generate a BRW report at
the same time.

Note that this enhancement
requires both OpenInsight
10.0.4 (or above), and the Uni-
versal Driver 5.2 (or above).
OpenInsight 10.0.7 will work
with the Universal Driver 5.1,
but it will not exhibit these li-
cense enhancements until it
is “paired” with a UD 5.2.

To take advantage of this li-
cense enhancement for O4W
and engine server tasks, us-
ers/developers must update
their eserver.cfg file (either

directly or through the Set-
tings dialogs). In particular,
any passwords that are cur-
rently explicitly embedded
in the eserver.cfg can be re-
placed with an asterisk (“*”);
this indicates that the specific
connection should use the
enhanced licensing. This also
has the additional advantage
of no longer requiring manual
updates to the eserver.cfg file
when passwords are changed
for the applications or users
defined in the connection
string. (As an additional en-
hancement, the username
can also be replaced with “*”
if you wish to use the ‘default
user’ created for an applica-
tion). 

Zumasys Release
AccuTerm 8

The wait is finally over! Accu-
Term 8 is here.

AccuTerm 8 brings new se-
curity, a fresh user interface,
and the ability to run Accu-
Term securely through your
web browser.

AccuTerm8 features dozens
of new features that give you
access to your PICK system
when and where you need it.
Our new subscription model
bundles Desktop, Web, and
Mobile editions; plus, you’ll
receive all future updates
automatically so you stay up
to date with the greatest fea-
tures.

•	 New User Interface —
Tear-off tabs, drag and
drop windows and new
Visual Studio Code color
schemes.

•	 Enhanced Security —
OpenSSL, brand new
encryption libraries and the
latest cryptography.

•	 Access from Any Device —
Run your PICK application
over the Web or in the
Cloud with our new fully-
responsive HTML5 browser
interface.

•	 Plus new 2:1 licensing
allows you to run

e xtra Newsletter-
Stay on top of Industry News

Tech Tips �
Job Postings �
New Products �
Corporate Updates �

www.intl-spectrum.com/newsletter

AccuTerm Desktop on two
machines, like office and
home; a new centralized
administration provides
control over user access;
and enhanced session
resilience (ReZume)
restores dropped sessions
running over the Internet,
Cloud, etc.

The best terminal emulator
for PICK just took a major
leap forward but this is just
the beginning. The new sub-
scription model means that
you can continue to obtain
AccuTerm for a very low up-
front price and receive con-
tinual updates and upgrades.
Costs and budgets are con-
trolled with a subscription
and you know what you are
paying every year. AccuTerm
Web with subscription puts
you on a path to the Cloud
and Software as a Service
which is the future.

Already an AccuTerm user
looking to upgrade? Contact
us today about some special
upgrade discounts which are
available until 12/31/19. 

INTL-SPECTRUM.COM u September/October 2019 u 14

T here are many ways to report
and analyze data contained in
your U2 databases. I would

like to share with you a simple pro-
cess that overcomes many of the ob-
stacles normally associated with ana-
lyzing MultiValue data. To meet my
real-world needs, I have developed a
callable UniBasic subroutine that will
convert your U2 data to transport-
able DBF files (dBASE 4) that can be
natively used by Excel as an ODBC
source for pivot tables or reports.

dBASE is a venerable file format that
supports up to a 2gb file size and can
contain hundreds of thousands of re-
cords with up to 255 fields. These
are theoretical values, but I’ve created
practical applications with very large
data sets without encountering any ca-
pacity issues.

Unlike CSV, dBASE is a binary for-
mat, so fields can be designated as
text or numeric in a way which is rec-
ognized by Excel. dBASE files can be
compressed. It is a very effective for-
mat for use with the string data stored
in U2 databases.

Basic MV Reports (BMVR) helps you
present Unidata data sets as Excel pivot
tables. Pivot table templates can be dis-
tributed separately to your user com-

munity and conveniently reused when
source data is updated on demand or
by scheduled phantoms. The process
can be integrated into any menu sys-
tem that can call UniBasic subroutines.

The subroutine supports two dBASE
file creation modes: FULL mode cre-
ates a stand-alone file that can be
opened by Excel. INFO mode creates
component elements of the .DBF for-
mat which can be combined with the
stored results of other runs of the same
report. This supports a form of data
warehousing and can be very efficient
when managing historical data.

You control the selection and format-
ting of your data. Basic MV Reports is
not a report writer. It operates as a form
of middleware dependent on your
selected and formatted data. Multi-
user support is provided through ar-
guments that utilize the indexing you
provide on your source data.

The steps to implement a report can be
summarized as:

yy Compile and catalog the BMVR.
DBASE.ENGINE subroutine in
any U2 directory

yy Create Q-Pointers for all data files
that are required for your report

yy Run your UniBasic program to se-
lect, update and format your report
data

yy Call BMVR.DBASE.ENGINE
with required arguments

yy Handle the delivery of the resulting
.dbf file to a local or network share

yy Open your Excel pivot table tem-
plate designed for a specific ODBC
data source

yy Refresh your Excel template

Free is a Very Good Price
No strings, no fine print, I’ll send you
all the code and instructions needed to
use this no-nonsense solution to your
Unidata reporting requirements. There
is no charge or obligation and you are
free to use, modify and integrate these
tools as you see fit. All code is in text
format and contains no binary or com-
piled elements. Free really is a very
good price, and the value is demon-
strable.

Basic MV Reports
A New Way to Handle U2 Reporting

B Y F A R L E Y W E L C H

It operates as a form of
middleware dependent
on your selected and

formatted data.

INTL-SPECTRUM.COM u September/October 2019 u 15

Just email your request to: basicMVre-
ports@gmail.com and I’ll get a pack-
age to you immediately.

My mission is to empower you to get
more value from your Unidata/Uni-
verse databases without the high cost
and complexity often associated with
MultiValue reporting solutions. Uti-
lizing Excel pivot tables as a presenta-
tion layer allows your users to expand
their analysis without tying up your
programming staff. One back-end so-
lution can support many end-user re-
quests.

If you’re pleased with the value and
have other needs, you’re invited to
reach out to talk about it. For more in-
formation, please check-out my web-
site at: www.basicMVreports.com.

Thanks in advance for your consider-
ation of Basic MV Reports. I look for-
ward to hearing from you.

Source File Configuration and
Multi-user Implementation

Create a standard U2 file to hold the
data for your report. The file must be
sized to hold the maximum number of
records you expect to include multi-
plied by the number of simultaneous
users you expect. This is a temporary
file that is cleared after the .dbf output
is created. Each record is keyed using a
unique session ID and a counter. Use
@LOGNAME : @TTY concatenated
with a numeric record counter to cre-
ate a unique record key. Create an attri-

bute (typically, UNIQUE_ID) on the
file and INDEX this attribute. Store @
LOGNAME : @TTY in this attribute.

Create dictionary attributes for each
data element you intend to include in
your report. Define each attribute with
the position, length and data type as
you normally would. All attributes are
single valued. The display name (dic-
tionary attribute #4) is used as the .dbf
file column header. These names must
be 10 or less characters long, must be
in all CAPS and must not contain any
special characters except the under-
score. You can also create a new dic-
tionary attribute for the .dbf column
header and specify that attribute when
BMVR.DBASE.ENGNE is called.
This can be useful if you have other
uses for your reporting file that require
a more descriptive display name.

Populate the Reporting File
One of the first and last steps in your
data population routine will be to re-
move records from the report file for
this unique user session [Figure 1].

Your report file population program
can be simple or complex. You are in
control of all joins, lookups, calcula-
tions and other data transformations
that you require. When each reporting
record is completed it is written to the
report file using a key equal to @LO-
GNAME:@TTY:”*”:<counter>.

You might be asking yourself why the
subroutine does not support virtual at-
tributes since the ability to use I-type
and V-type attributes is an important
feature of U2. The short answer is
“simplicity and performance”. Using
a dedicated and indexed source file
populated using UniBasic is simply
the most flexible way to manage large
amounts of data. Your report popula-
tion subroutine can calculate virtual
attributes in line or duplicate the re-
sults using UniBasic as needed.

Yes, this may seem like a lot of addi-
tional work, but the results can be very
well received by your users. Pivot tables
provide users with the tools to get new
insight from data sets and a single piv-
ot table can satisfy numerous reporting
requests.

Control the operation of the subrou-
tine through the arguments in Figure
2.

INF – the name of the Unidata file
containing the data to include in the
output. This is a file constructed us-
ing your own UniBasic routine that
accepts input; performs selects; nor-
malizes multi-value data sets; and per-
forms conversions and translations.

INFIELDS – dictionary items to in-
clude in the output. If set to “ALL”
then all D-type attributes are included.
Only D-type attributes are supported.

SUBROUTINE BMVR.DBASE.ENGINE(INF,INFLDS,XKEY,XVAL,OUTF,OUTMD,RESULT)

Figure 2

UNIQUE = @LOGNAME:@TTY
CLEAR.CMD = “SELECT <your report file> WITH UNIQUE_ID LIKE “:QUOTE(UNIQUE)
PERFORM CLEAR.CMD CAPTURING SPONGE
CDONE = 0
LOOP UNTIL CDONE
 READNEXT CLEAR.ID ELSE CDONE = 1
 DELETE <file variable opened to your report file>,CLEAR.ID
REPEAT

Figure 1

http://basicMVreports@gmail.com
http://basicMVreports@gmail.com
http://www.basicMVreports.com

INTL-SPECTRUM.COM u September/October 2019 u 16

XKEY – the name of an indexed field
on the data file. This is a value unique
to the current report and can reference
a specific user session or a phantom
calling the report. If the value provided

is set to the literal “SELECT-LIST”
then the value in XVAL (next argu-
ment) is the name of the select list to
use.

XVAL – value to use when selecting re-
cords from the source data file. If this
value is multi-valued (delimited with
CHAR(253)) then it is handled as a
list of keys and no further select is per-
formed. If the value in XKEY is “SE-
LECT-LIST” then the value in XVAL
is the name of the prebuilt select list
which is retrieved. Otherwise the value
is used as the indexed key. The type of
selection is determined by the diction-
ary of the indexed field.

OUTF – path and name for the com-
pleted dBASE file. Value 1 is the name
of the file; value 2 is the operating sys-
tem path. Value 3 sets the operating
system (W = Windows (default) or U
= Unix). This setting determines oper-
ating system file copy and delete com-
mands.

OUTMD – multi-value list of mode
type switches that control the opera-
tion of the report generator.

If OUTMD<1,1> equals the lit-
eral “FULL” then the output is a full
formatted dBASE file written with
the .dbf extension. If value 1 equals
“INFO” then the output consists of
dBASE component parts that can be
later combined and assembled into a
complete file.

OUTMD<1,2> is set to “YES” if con-
version formatting is to be applied to
the output data. The default is “NO”
which uses raw data from the source
file.

OUTMD<1,3> is the dictionary field
number to use as the column heading
in the output. The default is attribute
4 which is the normal field name.
Field names must be 10 characters or
less, must be in all CAPS and cannot
include some special characters. Us-
ing this switch allows you to specify a
name for each column in the output
without interfering with other uses of
your source file.

RESULT – returns “OK” if all went as
planned. This return argument is set to
“ERROR” followed by an error mes-
sage if a problem was encountered.

Code fragment to call Basic MV
Reports subroutine.

Insert the code in Figure 3 into
your report population routine
to call the dBASE generation.
Upon return, the .dbf file will be
located per your specification.

The dBASE routine can han-
dle a very large number of
records without overflow-
ing shared memory because
the .dbf file is written to disk
sequentially[Figure 4].

OSBWRITE DBF.DATA.REC ON DBF.FV AT DBF.BYTE
DBF.BYTE += LEN(DBF.DATA.REC)
DBF.DATA.REC = “”

Figure 4

INF = “<your report source file name>”
INFLDS = “ALL”
XKEY = “UNIQUE_ID”
UNIQUE = @LOGNAME:@TTY
XVAL = UNIQUE
OUTF = “”
OUTF<1,1> = “<name for .dbf file>”
OUTF<1,2> = “<path where you want the .dbf written>”
OUTF<1,3> = “U”
OUTMD = “”
OUTMD<1,1> = “FULL”
OUTMD<1,2> = “YES”
OUTMD<1,3> = 4
OUTMD<1,4> = “NO”
RESULT = “”
*
CALL BMVR.DBASE.ENGINE(INF,INFLDS,XKEY,XVAL,OUTF,OUTMD,RESULT)

Figure 3

PICK/U2
Resources Available

Execu-Sys, Ltd is an Executive Search
& Consulting firm that has specialized
in the PICK/MULTIVALUE market since

1988 and is the Preferred Partner
of Rocket Software for PICK/U2

professional services.

Hourly rates for contract programming
are extremely competitive and there is
no minimum time or $ commitment.

Contact us today to discuss potential
engagements.

Matt Hart
EXECU-SYS, LTD

1411 Broadway, Suite 1220
New York, NY 10018

(800) 423-1964 x302
Email: mh@eslny.com

INTL-SPECTRUM.COM u September/October 2019 u 17

Upon return you handle the delivery of
the file. Clean-up the reporting file by
removing all the indexed records you
added for this instance of the report.

Delivering Results to Users
The final .dbf file must be copied to a
specific folder/file name defined in the
ODBC configuration of your pivot
table. The best results are obtained by
configuring a folder on the root (C:\)
drive of a user’s desktop.

When processing an on-demand re-
port request from a single user a simple
way to make this happen is to send the
.dbf via your email system. You can in-
clude both the .dbf and a copy of the
associated Excel pivot table template
as attachments to the email. The email
message provides instructions for the
user to detach the .dbf to the defined
ODBC folder.

When processing a report generated by
a phantom and intended to be accessed
by any number of users, the .dbf can be
written to a Windows network share.
Macro programming in the pivot table
template copies the file from the net-
work share to the user’s ODBC folder.
The user can select from available .dbf
versions. The pivot table template uses
a defined file name in a defined loca-
tion.

Note that the Excel pivot template can
be refreshed against new data repeat-
edly while maintaining all formatting
and calculations. The pivot table can
have multiple pre-formatted tabs.

Figure 5 is a simple example of how
Basic MV Reports delivers results.
The pivot table itself can provide a
significant amount of row-level calcu-
lation; data formatting and, of course,
the slicing & dicing that pivot tables
are designed for.

Figure 6

Figure 5

CHANGE. ADAPT. EVOLVE.

39 TH Annua l Conference

APRIL 20 – 23, 2020 | SADDLEBROOK RESORT, TAMPA, FL

 SPECTRUM

I N T E R N A T I O N A L

SPECTRUM
MultiValue Conference and Partner Exchange

INTL-SPECTRUM.COM u September/October 2019 u 18

MultiValue Data Handling
Handling multi-value arrays in your
report requires that you write an indi-
vidual report record for each element
in the array. Build a base report record
containing data for all single value ele-
ments you are using and use this as a
base for each of the multi-value array
elements.

Figure 6 is an SBclient user interface
displaying a single U2 record using
an MV array detailing the invoice line
items for a billing job.

Converted to dBASE and displayed
in Excel the results look like this. The
source data could contain any number
of U2 records with the MV arrays flat-
tened. This allows the pivot table to fil-

ter and sort using any combination of
data elements. For example, you might
want to compare pricing across cus-
tomers for one or more invoice codes
[Figure 7].

Setting Up ODBC Connections In
Excel

In Windows 10, access the Con-
trol Panel; double-click Administra-
tive Tools; double-click ODBC Data
Sources (32-bit) to display this dialog
[Figure 8].

Configure as shown by selecting dBase
IV and the directory where you are
storing the .dbf files.

Open a new Excel workbook and In-
sert a pivot table. Select “Use an exter-

nal data source” and click on “Choose
Connection”. In the next dialog click
on “Browse for More …” and then
click on “New Source”. Select OBDC
DSN from the list and click Next.
Choose the OBDC data source that
you created above. Finally select the
.dbf file from the displayed list and
click Next to add a description of this
connection and click Finish. Click OK
on the final dialog box. You can now
begin to format your pivot table. After
formatting and saving the pivot table
you can use this workbook again each
time you update the .dbf table that you
pointed it at.

You may already know about OBDC
data sources. For more information
you can check this website or any of
the numerous sources on the internet.

https://knowledge.autodesk.com/
sea rch- re su l t / caa s /CloudHelp/
c l o u d h e l p / 2 0 1 8 / E N U / A u t o -
CAD-Customization/files/GUID-
A7842E65-0BF1-4D41-9CCA-
05AFA5AACF10-htm.html is

Figure 7

Figure 8

International Spectrum Magazine
has a Feedback Department,

sometimes known as Letters to
the Editor.

We want to hear your comments,
your reactions, your agreement
or disagreement with what you
see. Also, do not hesitate to let

us know about things happening
in the MultiValue Community we

may not have heard about yet.

What came first, the
letters or the letters-to-
the-editor department?

Feedback

Please send your comments by e-mail to:

editor@intl-spectrum.com

https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2018/ENU/AutoCAD-Customization/files/GUID-A7842E65-0BF1-4D41-9CCA-05AFA5AACF10-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2018/ENU/AutoCAD-Customization/files/GUID-A7842E65-0BF1-4D41-9CCA-05AFA5AACF10-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2018/ENU/AutoCAD-Customization/files/GUID-A7842E65-0BF1-4D41-9CCA-05AFA5AACF10-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2018/ENU/AutoCAD-Customization/files/GUID-A7842E65-0BF1-4D41-9CCA-05AFA5AACF10-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2018/ENU/AutoCAD-Customization/files/GUID-A7842E65-0BF1-4D41-9CCA-05AFA5AACF10-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2018/ENU/AutoCAD-Customization/files/GUID-A7842E65-0BF1-4D41-9CCA-05AFA5AACF10-htm.html

ONLINE BANNER ADS:

VERTICAL BANNER (120X240)

 $2,880.00 per year or $300.00 per month

RECTANGLE (180X150)

 $2,592.00 per year or $270.00 per month

SQUARE BUTTON (125X125)

 $1,680.00 per year or $175.00 per month

E-MAIL NEWSLETTER BANNER:

HALF BANNER (300X90)

 $4,200.00 per year or $175.00 per issue

ONLINE MARKETPLACE LIST:

BASIC LISTING – FREE

QQ Company Page

QQ Product Page – Limit 1

QQ ADs will be displayed on your page

PROFESSIONAL LISTING

 $350.00 per year/ $35.00 per month

QQ Company Page

QQ Product Pages - Unlimited

QQ No ADs displayed on your page

QQ Download Links

For more information contact Nathan at: nathan@intl-spectrum.com

M a r k e t p l a c eM a r k e t p l a c e

INTL-SPECTRUM.COM u September/October 2019 u 19

ACCOUNTING
Natec Systems
www.natecsystems.com | nrector@natecsystems.com

COMPLIANCE
SJ+ Systems Associates
www.sjplus.com | sjoslyn@sjplus.com

CONSULTING
Drexel Management Service
www.drexelmgt.com | dconboy@drexelmgt.com

Execu-Sys, LTD
www.eslny.com | mh@eslny.com

HDWP
www.HDWP.com | results@HDWP.com

Modern MultiValue, LLC
www.ModernMultiValue.com | info@ModernMultiValue.com

PICK Programmers Shop
www.pickprogram.com | brian@pickprogram.com

Precision Solutions
www.precisonline.com | Kevin@PrecisOnline.com

DATABASE
Zumasys
www.zumasys.com/products/accuterm/

FILE MANAGEMENT
Paradigm Systems, Inc.
www.paradigm-systems.us | sales@paradigm-systems.us

REPORTING
Brian Leach Consulting, LTD
www.brianleach.co.uk | brian@brianleach.co.uk

TERMINAL EMULATOR
Zumasys
www.zumasys.com/products/accuterm/

WEB DEVELOPMENT AND TOOLS
Aptron Corporation
www.aptron.com | info@aptron.com

LETTERS TO THE EDITOR

Have an opinion on an article: Agree, disagree,
or enhancement to an article from a previous
issue? International Spectrum and our authors are
interested in hearing from you!

E-mail: editor@intl-spectrum.com

WANT TO SEE A SPECIFIC TOPIC?
International Spectrum is looking for writers,
feedback, and topic ideas. We all have specific
topics and issues that we need answers to find
solutions for. Send us an E-mail with topics you
would like to have covered in the magazine or on
the website.

E-mail: nathan@intl-spectrum.com

WANT TO WRITE?
Expand your professional credentials, and provide
us with an article.

Give us a rough and ugly outline, and we will help
you refine it, proof it, and make it press ready. Or
you can give us something polished, proofed, and
press ready to publish.

Share your thoughts and expertise with over
10,000 fellow MultiValue developers and users.

E-mail: editor@intl-spectrum.com

NEED A MENTOR?
Mentors give developers the ability to ask industry
experts for direction, code examples, and/or
just ask them to see if something makes sense.
Sometimes, all you need is a resource or example
to start or complete a project.

Check with us to see who is available for mentoring,
and how you can take advantage of it to save your
business or company money.

E-mail: nathan@intl-spectrum.com

WANT TO BE A MENTOR?
We have many retired or semi-retired professionals
out there that would love to share their knowledge
of MultiValue development. If you are one of
them, please contact us to see what mentoring is
all about.

E-mail: nathan@intl-spectrum.com

INTL-SPECTRUM.COM u September/October 2019 u 20

W hen we work in PHP, or
Python, or Ruby, or C#,
we have certain tools.

When we work in MultiValue, we have
certain tools. I’m greedy, I want the
best of both. This is part one in a series
on how to create MultiValue features
in PHP, Python, Ruby, Node.js, and
C#.

Not only does this give us a taste of
MV in the other languages we pick
up, but it also becomes a sort of Ro-
setta Stone. For those who don’t know
the term, the Rosetta Stone was a tab-
let with three written languages on it,
each declaring the same information.
Having them side-by-side meant that
if you could read any one of the lan-
guage, you could use it as a guide to-
ward learning the other two.

So, seeing code in C# or Ruby means
that for people who know one of them,
the parallels can help programmers
bridge from one into the other. Hat tip
to my cousin Alana for suggesting the
Rosetta Stone metaphor.

To get this started, we’ve elected to
implement some of the nicer features
of OCONV.

DATE
We won’t be implementing every vari-
ation of the Date Conversion but we
will implement the core features. And,
since you’ll have the source code, so
you can expand it. We’ll get the “/” vs.
“-” working [Figure 1].

TIME
As with Date, above, we’ll just imple-
ment a subset of the features [Figure
2].

GROUP EXTRACT
Our Group Extract is slightly more
robust than the MultiValue version. It
will accept multiple character delimit-
ers. Included in the code is notes on

how to scale it back if you want single
characters only [Figure 3].

EXAMPLES OF USE
See Figure 4.

Next article, we’ll build on these ex-
amples and talk more about how to
use them to reach Ruby, C#, Python,
Node.js, and PHP people how Multi-
Value works. By then, we may have a
few more languages added.

You can find this code on GitHub:
https://github.com/CharlesBarouch/
mv_core. You can also create a branch
and start adding features and corrections.
We welcome your participation. IS

The
Rosetta Stone

Project
B Y C H A R L E S B A R O U C H ,

W I T H A D D I T I O N A L C O D E B Y

A A R O N Y O U N G A N D D I C K T H I O T

So, seeing code in C#
or Ruby... can help

programmers bridge from
one into the other.

CHARLES BAROUCH

is the CTO of HDWP,

Inc. and the Publisher

at HDWPbooks. You

can read his writing in

International Spectrum, Theme-Thology,

Novo Pulp, Pax Solaria, PerehelionSF, and

the Interrogative series, which begins with

Tiago and the Masterless.

https://github.com/CharlesBarouch/mv_core
https://github.com/CharlesBarouch/mv_core

INTL-SPECTRUM.COM u September/October 2019 u 21

PHP Code (Full code: https://github.com/CharlesBarouch/mv_core)
<?php
// mv_core.php
// by Charles Barouch (Results@HDWP.com)
// on 09/15/19
// Originally published in Intl-Spectrum.com
// ---
function mv_oconv($value,$rule)
{
 $rule_1 = strtoupper(substr($rule,0,1));
 $rule_2 = substr($rule,0,2);
 if($rule_1 == ‘D’) { $result = mv_oconv_date($value,$rule);}
 else if($rule_1 == ‘G’) { $result = mv_oconv_group($value,$rule);}
 else if($rule_2 == ‘MT’) { $result = mv_oconv_time($value,$rule);}
 return $result;
}

function mv_oconv_date($value,$rule)
{
 $dt = new DateTime(“1967-12-31 00:00:00”);
 $dt->Modify(‘+’.$value.’ day’);
 $mdy = [$dt->format(“m”),$dt->format(“d”),$dt->format(“Y”)];
 $dlmtr = ‘/’;
 if(strpos($rule,’-’,1)) {$dlmtr = ‘-’;}
 if(is_numeric(substr($rule,1,1)))
 {
 $mdy[2] = substr($mdy[2],-1*substr($rule,1,1));
 }
 if(strpos($rule,’Y’)) {$result = $mdy[2];} else {
 if(substr($rule,0,2) == ‘DM’) {$result = $mdy[0]; } else {
 if(substr($rule,0,2) == ‘DD’) {$result = $mdy[1]; } else {
 $result = $mdy[0] . $dlmtr . $mdy[1] . $dlmtr . $mdy[2];
 }
 }
 }
 return $result;
}
?>

PYTHON (Full code: https://github.com/CharlesBarouch/mv_core)
import datetime
mv_core.py
by Charles Barouch
on 09/15/19
Originally published in Intl-Spectrum.com

def oconv_date(value, rule):
 baseline = datetime.date(1967, 12, 31)
 result = baseline + datetime.timedelta(days=value)
 # Digits in a year
 YearStart = 0
 YearFinish = 4
 if(“2” in rule):
 YearStart = 2
 YearFinish = 4
 delimiter = ‘/’
 if(“-” in rule):
 delimiter = “-”
 if(“Y” in rule):
 result = str(result.year)[YearStart:YearFinish]
 else:
 if(“DM” in rule):
 result = str(result.month)
 else:
 if(“DD” in rule):
 result = str(result.day)
 else:
 result = str(result.month) + delimiter + str(result.day) + delimiter + (str(result.year)

Figure 1

INTL-SPECTRUM.COM u September/October 2019 u 22

[YearStart:YearFinish])
 return result

def oconv(value, rule):
 rule = rule.upper()
 if rule[0] == ‘D’:
 result = oconv_date(value,rule)
 if rule[0] == ‘G’:
 result = oconv_group(value,rule)
 if rule[0:2] == ‘MT’:
 result = oconv_time(value,rule)
 return result

RUBY (Full code: https://github.com/CharlesBarouch/mv_core)
mv_core.rb
by Aaron Young (brainomite@gmail.com)
on 09/30/19

require “Date”

def mv_oconv(value, rule)
 upcased_rule = rule.upcase # ensure rule is uppercase
 one_letter_rule = upcased_rule[0]
 two_letter_rule = upcased_rule[0..1] # get the first two letters using a range
 if one_letter_rule == “D” # its a date
 result = mv_oconv_date(value.to_i, upcased_rule)
 elsif one_letter_rule == “G” # its a group
 result = mv_oconv_group(value, upcased_rule)
 elsif two_letter_rule == “MT” # its a time
 result = mv_oconv_time(value.to_i, upcased_rule)
 else
 result = nil
 end
 result.to_s
end

def mv_oconv_date(value, rule)
 # create a date starting from 12/31/1967 and add value (days) to it
 date = Date.new(1967,12,31) + value

 case rule
 when “DM”
 date.strftime(“%m”) # zero padded month string
 when “DD”
 date.strftime(“%d”) # zero padded day string

 # regular expression for a full date with delimiters i.e. “D2-”
 when /D[1234][-\/]/
 get_date(date, rule)

 # regular expression for year with a length i.e. “D4Y”
 when /D[1234]Y/
 get_year(date, rule)
 end
end

NODEJS (Full code: https://github.com/CharlesBarouch/mv_core)
// mvCore.js
// by Aaron Young (brainomite@gmail.com)
// on 10/13/19
// ---

const mvOconv = (value, rule) => {
 upcasedRule = rule.toUpperCase();

Figure 1 Contined

INTL-SPECTRUM.COM u September/October 2019 u 23

 oneLetterRule = upcasedRule[0];
 twoLetterRule = upcasedRule.substring(0, 2);

 if (oneLetterRule === “D”) {
 return mvOconvDate(Number.parseInt(value), upcasedRule);
 } else if (twoLetterRule === “MT”) {
 return mvOconvTime(Number.parseInt(value), upcasedRule);
 } else if (oneLetterRule === “G”) {
 return mvOconvGroup(value, upcasedRule);
 }
};

const mvOconvDate = (value, rule) => {
 const mvEpoch = new Date(1967, 11, 31);
 let date = mvEpoch.addDays(value);

 if (/D[1234][-\/]/.test(rule)) {
 // regular expression for a full date with delimiters i.e. “D2-”
 return getDate(date, rule);
 } else if (/D[1234]Y/.test(rule)) {
 // regular expression for year with a length i.e. “D4Y”
 return getYear(date, rule);
 } else if (rule === “DM”) {
 return pad(date.getMonth() + 1); // zero based months
 } else if (rule === “DD”) {
 return pad(date.getDate());
 } else {
 return “oops”;
 }
};

const getYear = (date, rule) => {
 years = date.getFullYear().toString();
 chars = Number.parseInt(rule[1]);
 return years.substring(4 - chars);
};

const getDate = (date, rule) => {
 day = pad(date.getDate());
 month = pad(date.getMonth() + 1); // zero-based months need to add 1
 year = getYear(date, rule);
 delim = rule[2];
 return `${month}${delim}${day}${delim}${year}`;
 // return “yay”;
};

// helpers

const isInteger = string => Number.isInteger(Number.parseInt(string));

const pad = number => {
 if (number < 10) {
 return “0” + number;
 }
 return number.toString();
};

Date.prototype.addDays = function(days) {
 // https://stackoverflow.com/questions/563406/add-days-to-javascript-date
 var date = new Date(this.valueOf());
 date.setDate(date.getDate() + days);
 return date;
};

const findFirstNonNumericValue = value => {
 for (char of value) {
 if (!isInteger(char)) {
 return char;
 }

Figure 1 Contined

INTL-SPECTRUM.COM u September/October 2019 u 24

 }
};

module.exports = {
 mvOconv
};

C# (Full code: https://github.com/CharlesBarouch/mv_core)
using System;

using System.Globalization;

namespace mv_core
{
 public class mv_conv
 {
 public string mv_oconv(string value, string rule)
 {
 string result = “”;
 string rule1 = rule.ToUpper().Substring(0, 1);
 string rule2 = rule.Substring(0, 2);
 if (rule1 == “D”)
 {
 result = mv_oconv_date(value, rule);
 }
 else if (rule2 == “MT”)
 {
 result = mv_oconv_time(value, rule);
 }
 else if (rule1 == “G”)
 {

 }
 else { result = “”; }

 return result;
 }
 private string mv_oconv_date(string value, string rule)
 {
 string result = “”;
 DateTime dt = new DateTime(1967, 12, 31);
 dt = dt.AddDays(Convert.ToInt16(value));

 //break into elements
 string dt_day = dt.ToString(“dd”);
 string dt_mo = dt.ToString(“MM”);
 string dt_yr = dt.ToString(“yyyy”);

 string dt_day_shortname = dt.ToString(“ddd”);

 string dt_mo_shortname = dt.ToString(“MMM”);

 string dt_yr2 = dt_yr.Substring(2, 2);

 string separator = rule.Contains(“/”) ? “/” : rule.Contains(“-”) ? “-” : “ “;

 string toReturn = string.Concat(“{0}”, separator, “{1}”, separator, “{2}”);

 switch (rule)
 {
 case “D2/”:
 case “D2-”:
 result = String.Format(toReturn, dt_mo, dt_day, dt_yr2);
 break;
 case “D2”:
 case “D4”:
 result = String.Format(toReturn, dt_day, dt_mo_shortname,

Figure 1 Contined

INTL-SPECTRUM.COM u September/October 2019 u 25

(rule == “D2” ? dt_yr2 : dt_yr));
 break;
 case “D4/”:
 case “D4-”:
 result = String.Format(toReturn, dt_mo, dt_day, dt_yr);
 break;
 case “DD”:
 result = dt_day;
 break;
 case “DW”:
 result = (Convert.ToInt32(dt.DayOfWeek) * 1).ToString();
 break;
 case “DWA”:
 result = dt.ToString(“dddd”);
 break;
 case “DWB”:
 result = dt_day_shortname;
 break;
 case “DM”:
 result = dt_mo;
 break;
 case “DMA”:
 result = dt.ToString(“MMMM”);
 break;
 case “DMB”:
 result = dt_mo_shortname;
 break;
 case “DQ”:
 result = GetQuarter(dt).ToString();
 break;
 case “DY”:
 result = dt_yr;
 break;
 case “DY2”:
 result = dt_yr2;
 break;
 case “DY4”:
 result = dt_yr;
 break;
 }
 return result.ToUpper();
 }
}

Figure 1 Contined

PHP
function mv_oconv_time($value,$rule)
{
 $hour = floor($value / 3600);
 $minute = floor(($value - $hour*3600)/ 60);
 $second = $value - ($hour*3600 + $minute*60);
 $apm = ‘’;
 if (substr($rule,2,1) == ‘H’)
 {
 $hour = ($hour % 24);
 if($hour >= ‘00’ && $hour <= ‘11’) {$apm = ‘am’;} else {$apm = ‘pm’; $hour = $hour - 12;}
 }
 $hour = str_pad($hour, 2, “0”, STR_PAD_LEFT);
 $minute = str_pad($minute, 2, “0”, STR_PAD_LEFT);
 $second = str_pad($second, 2, “0”, STR_PAD_LEFT);
 $result = $hour . ‘:’ . $minute . ‘:’ . $second . $apm;
 return $result;
}

PYTHON
def oconv_time(value,rule):
 result = datetime.timedelta(seconds=value)
 return str(result)

Figure 2

INTL-SPECTRUM.COM u September/October 2019 u 26

RUBY
def mv_oconv_time(value, rule)
 time = Time.at(value) # create a time object using seconds
 time.gmtime # remove utc offsets so it isn’t skewed
 # convert to a string
 if rule == “MTS” # use military time
 time.strftime(“%H:%M:%S”)
 elsif rule == “MTHS” # use non-military time with a meridiem indicator
 time.strftime(“%I:%M:%S%^P”)
 else
 nil # return nothing, not a valid rule
 end
end

NODEJS
const mvOconvTime = (value, rule) => {
 const time = new Date(value * 1000); // uses miliseconds
 const seconds = pad(time.getUTCSeconds());
 const minutes = pad(time.getUTCMinutes());
 if (rule === “MTS”) {
 const hours = pad(time.getUTCHours());
 return `${hours}:${minutes}:${seconds}`;
 }
 if (rule === “MTHS”) {
 let hours;
 const utcHours = time.getUTCHours();
 if (utcHours === 0) {
 hours = 12;
 } else if (utcHours > 12) {
 hours = pad(utcHours - 12);
 } else {
 hours = pad(utcHours);
 }
 const AMorPM = utcHours < 12 ? “AM” : “PM”;
 return `${hours}:${minutes}:${seconds}${AMorPM}`;
 }
};

C#
 private string mv_oconv_time(string value, string rule)
 {
 string result = “”;
 Int32 value_time = Convert.ToInt32(value);
 Int32 hour = (value_time / 3600);
 Int32 minute = ((value_time - (hour * 3600)) / 60);
 Int32 second = ((value_time - ((hour * 3600) + (minute * 60))));

Figure 2 Contined

PHP
function mv_oconv_group($value,$rule)
{
 // Split up the Rule into Skip, Delimiter, and Take
 $skip = 0;
 $take = 0;
 $dlmtr = ‘’;
 $rpos = 0;
 $smax = strlen($rule);
 for ($scnt = 1; $scnt < $smax; $scnt++)
 {
 $chr = $rule[$scnt];
 if(is_numeric($chr))
 {
 if($rpos == 0){$skip .= $chr;} else {$take .= $chr;}
 } else {
 if($dlmtr == ‘’){ $dlmtr = $chr; }
 $rpos = 2;

Figure 3

INTL-SPECTRUM.COM u September/October 2019 u 27

 }
 }
 $result = ‘’;
 $temp = explode($dlmtr,$value);
 $skip += 0; // Force numeric
 $rmax = $skip + $take;
 for($rcnt = $skip; $rcnt < $rmax; $rcnt++)
 {
 if($result != ‘’) { $result .= $dlmtr;}
 $result .= $temp[$rcnt];
 }
 return $result;
}

PYTHON
def oconv_group(value,rule):
 # split rule into skip, delimiter, and take
 skip = 1
 take = 3
 delimiter = ‘!’
 # apply rule
 result = ‘’
 value = value.split(delimiter)
 for parts in value:
 if skip > 0:
 skip -= 1
 else:
 if take > 0:
 take -= 1
 if result != ‘’:
 result += delimiter
 result += parts
 return result

RUBY
def mv_oconv_group(value, rule)
 actual_rule = rule[1..-1] # remove first char
 delimiter = find_first_non_numeric_value(actual_rule) # find the delimiter

 # take the rule and turn into an array using the delimiter then
 # convert all elements into integers and assign the first
 # value to skip_num and second value to take_num
 skip_num, take_num = actual_rule.split(delimiter).map(&:to_i)
 array = value.split(delimiter) # create an array using the delimiter

 # create a sub array by skipping skip_num numbers then take the first
 # take_num elements and return the new resulting array
 array[skip_num..-1].take(take_num)
end

NODEJS
const mvOconvGroup = (value, rule) => {
 const actualRule = rule.substring(1);
 const delimiter = findFirstNonNumericValue(actualRule);
 const [skip_num, take_num] = actualRule
 .split(delimiter)
 .map(val => Number.parseInt(val));
 const fullArray = value.split(delimiter);
 const subArray = fullArray.slice(skip_num);
 const resultArray = subArray.slice(0, take_num);
 return resultArray.toString();
};

C#
Forthcoming

Figure 3 Continued

INTL-SPECTRUM.COM u September/October 2019 u 28

PHP
<?php
// add the function to this script
include_once(‘./mv_core.php’);
//
// Load Test Cases
$stack = file_get_contents(‘../teststack.txt’);
$stack = explode(‘^’,$stack);
echo ‘Loaded Test Cases’ . “\r\n”;
foreach($stack as $testcase)
{
 $testcase = explode(‘]’,$testcase);
 echo mv_oconv($testcase[0],$testcase[1]) . “\r\n”;
}
//
// Run some pre-set cases
echo “\r\n”;
echo ‘Hardcoded Cases’ . “\r\n”;
echo mv_oconv(-1200,’D2/’) . “\r\n”;
echo mv_oconv(18500,’D2/’) . “\r\n”;
echo mv_oconv(18500,’D4-’) . “\r\n”;
echo mv_oconv(18500,’DM’) . “\r\n”;
echo mv_oconv(18500,’DD’) . “\r\n”;
echo mv_oconv(18500,’D2Y’) . “\r\n”;
echo mv_oconv(86375,’MTS’) . “\r\n”;
echo mv_oconv(86375,’MTHS’) . “\r\n”;
echo mv_oconv(‘A!BB!CCC!DDD!DDD’,’G1!3’);
?>

PYTHON
import mv_core as mv

print(mv.oconv(18575,’D2/’))
print(mv.oconv(18575,’D4-’))
print(mv.oconv(18575,’DM’))
print(mv.oconv(18575,’DD’))
print(mv.oconv(18575,’D2Y’))
print(mv.oconv(86375,’MTS’))
print(mv.oconv(86375,’MTHS’))
print(mv.oconv(‘A!BB!CCC!DDD!DDD’,’G1!3’))

RUBY
test.rb
by Aaron Young (brainomite@gmail.com)
on 09/30/19

require_relative “mv_core.rb”

puts “Loaded Test Cases”
file = File.open(__dir__ + “/../teststack.txt”)
read the file and remove linefeeds
stack_data = file_data = file.read.chomp
tests = stack_data.split(“^”)
tests.each do |test|
 params = test.split(“]”)
 value = params[0]
 rule = params[1]
 expected = params[2]
 puts “mv_oconv(#{value}, \”#{rule}\”) - Expected: ‘#{expected}’ - Actual: ‘#{mv_oconv(value, rule)}’”
end
puts “”

Run some pre-set cases
puts “Hardcoded Cases”
puts mv_oconv(18500,’D2/’) # 08/25/18

Figure 4

INTL-SPECTRUM.COM u September/October 2019 u 29

puts mv_oconv(18500,’D4-’) # 08-25-2018
puts mv_oconv(18500,’DM’) # 08
puts mv_oconv(18500,’DD’) # 25
puts mv_oconv(18500,’D2Y’) # 18
puts mv_oconv(86375,’MTS’) # 23:59:35
puts mv_oconv(86375,’MTHS’) # 11:59:35pm
puts mv_oconv(‘A!BB!CCC!DDD!DDD’,’G1!3’) # [“BB”, “CCC”, “DDD”]

NODEJS
// by Aaron Young (brainomite@gmail.com)
// on 09/30/19
// ---
const { mvOconv } = require(“./mvCore”);
const path = require(“path”);

const filePath = path.join(__dirname, “..”, “teststack.txt”);
console.log(“Loaded Test Cases”);
const stackData = require(“fs”)
 .readFileSync(filePath, “utf-8”)
 .split(“\n”)
 .filter(Boolean)[0]; // get first line sans new line chars
tests = stackData.split(“^”);
for (test of tests) {
 const [value, rule, expected] = test.split(“]”);
 const result = mvOconv(value, rule);
 console.log(
 `mv_oconv(${value}, “${rule}”) - Expected: ‘${expected}’ - Actual: ‘${result}’`
);
}

console.log(“”);
console.log(“Hardcoded Cases”);
console.log(mvOconv(18500, “D2/”)); // 08/25/18
console.log(mvOconv(18500, “D4-”)); // 08-25-2018
console.log(mvOconv(18500, “DM”)); // 08
console.log(mvOconv(18500, “DD”)); // 25
console.log(mvOconv(18500, “D2Y”)); // 18
console.log(mvOconv(86375, “MTS”)); // 23:59:35
console.log(mvOconv(86375, “MTHS”)); // 11:59:35PM
console.log(mvOconv(“A!BB!CCC!DDD!DDD”, “G1!3”)); // BB,CCC,DDD

C#
using System;
using mv_core;

namespace mv_oconv_test
{
 class Program
 {
 static void Main(string[] args)
 {
 string test_date = “18915”;
 var conv = new mv_core.mv_conv();
 string oconv_date = conv.mv_oconv(test_date, “D2/”);
 Console.WriteLine(“D2/ - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “D2-”);
 Console.WriteLine(“D2- - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “D2”);
 Console.WriteLine(“D2 - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “D4/”);
 Console.WriteLine(“D4/ - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “D4-”);
 Console.WriteLine(“D4- - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “D4”);
 Console.WriteLine(“D4 - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DD”);

Figure 4 Contined

INTL-SPECTRUM.COM u September/October 2019 u 30

 Console.WriteLine(“DD - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DW”);
 Console.WriteLine(“DW - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DWA”);
 Console.WriteLine(“DWA - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DWB”);
 Console.WriteLine(“DWB - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DM”);
 Console.WriteLine(“DM - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DMA”);
 Console.WriteLine(“DMA - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DMB”);
 Console.WriteLine(“DMB - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DQ”);
 Console.WriteLine(“DQ - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DY”);
 Console.WriteLine(“DY - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DY2”);
 Console.WriteLine(“Dy2 - “ + oconv_date);
 oconv_date = conv.mv_oconv(test_date, “DY4”);
 Console.WriteLine(“DY4 - “ + oconv_date);

 string test_time = “12519”;
 string oconv_time = conv.mv_oconv(test_time, “MT”);
 Console.WriteLine(“MTS - “ + oconv_time);
 oconv_time = conv.mv_oconv(test_time, “MTS”);
 Console.WriteLine(“MT - “ + oconv_time);
 oconv_time = conv.mv_oconv(test_time, “MTHS”);
 Console.WriteLine(“MTHS- “ + oconv_time);

 var ans = Console.ReadLine();
 }
 }
}

Figure 4 Contined

Systems
Natec

Providing Solutions to your MultiValue Questions

Read/Write Directly to Quickbooks •	
Databases
Customer, Vendor, Invoices, Purchase Orders, Chart
of Accounts

mvQB API is Designed for the •	
MultiValue Program to Use
All routines are simple BASIC calls designed for the
developer. No special user interfaces required.

No Need to Learn the Internals of •	
QuickBooks

QuickBooks Pro/Premier/Enterprise•	

QB

Phone: 303.465.9616
E-mail: mvqb@natecsystems.com
Website: www.natecsystems.com

mv QuickBooks API for the MultiValue Database

